论文标题

内窥镜图像的基于CNN的盲型剥离方法

A CNN-Based Blind Denoising Method for Endoscopic Images

论文作者

Zou, Shaofeng, Long, Mingzhu, Wang, Xuyang, Xie, Xiang, Li, Guolin, Wang, Zhihua

论文摘要

无线胶囊内窥镜(WCE)捕获的图像质量是医生诊断胃肠道(GI)疾病的关键。但是,由于胃肠道的照明和复杂环境,存在许多低质量的内窥镜图像。在增强过程之后,严重的噪声成为一个不可接受的问题。噪声随着不同的相机,胃肠道环境和图像增强而变化。并且很难获得噪声模型。本文提出了一个内窥镜图像的卷积盲注网络。我们将深层图像先验(DIP)方法应用于没有特定噪声模型和地面真相的嘈杂图像进行迭代的迭代迭代。然后,我们根据Mobilenet设计了一个盲图质量评估网络,以估算重建图像的质量。估计的质量用于停止以DIP方法的迭代操作。通过在我们的DIP过程中使用转移学习,迭代次数减少了约36%。内窥镜图像和现实世界噪声图像的实验结果证明了我们所提出的方法优于最先进的方法,从视觉质量和定量指标方面。

The quality of images captured by wireless capsule endoscopy (WCE) is key for doctors to diagnose diseases of gastrointestinal (GI) tract. However, there exist many low-quality endoscopic images due to the limited illumination and complex environment in GI tract. After an enhancement process, the severe noise become an unacceptable problem. The noise varies with different cameras, GI tract environments and image enhancement. And the noise model is hard to be obtained. This paper proposes a convolutional blind denoising network for endoscopic images. We apply Deep Image Prior (DIP) method to reconstruct a clean image iteratively using a noisy image without a specific noise model and ground truth. Then we design a blind image quality assessment network based on MobileNet to estimate the quality of the reconstructed images. The estimated quality is used to stop the iterative operation in DIP method. The number of iterations is reduced about 36% by using transfer learning in our DIP process. Experimental results on endoscopic images and real-world noisy images demonstrate the superiority of our proposed method over the state-of-the-art methods in terms of visual quality and quantitative metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源