论文标题
差异$ p $ -laplacian的平均价值公式
A mean value formula for the variational $p$-Laplacian
论文作者
论文摘要
我们证明了$ p $ -laplace运算符的新的渐近平均值公式,$$Δ_pu = \ text {div}(| \ nabla u |^{p-2} \ nabla u),$$在粘度senses中有效。在飞机上,对于$ p $的一定范围,平均值公式在某种意义上保持。我们还研究了相关动态编程原理的存在,独特性和收敛性。
We prove a new asymptotic mean value formula for the $p$-Laplace operator, $$ Δ_p u=\text{div}(|\nabla u|^{p-2}\nabla u), $$ valid in the viscosity sense. In the plane, and for a certain range of $p$, the mean value formula holds in the pointwise sense. We also study the existence, uniqueness and convergence of the related dynamic programming principle.