论文标题

数据驱动的模型预测控制使用插值Koopman发电机

Data-Driven Model Predictive Control using Interpolated Koopman Generators

论文作者

Peitz, Sebastian, Otto, Samuel E., Rowley, Clarence W.

论文摘要

近年来,Koopman运营商在动态系统分析中的成功也推动了基于Koopman运营商的控制框架的发展。为了通过动态模式分解保留近似值相对较低的数据要求,最近在[Peitz \&Klus,Automatica 106,2019]中提出了一种量化方法。这样,仅使用一组有限的基于基于基于的自动koopman操作员的自主koopman运算符的减少模型,就可以通过开关系统技术来控制非线性动力学系统的控制。这些单个系统可以从数据中非常有效地近似。主要思想是将控制系统转换为一组自主系统,必须为其计算最佳切换序列。在本文中,我们将这些结果扩展到使用放松的连续控制输入。这样,我们结合了近似具有连续控制的有限自主系统的数据效率的优势。我们表明,当使用Koopman Generator时,这种放松是通过两个操作员之间的线性插值实现的 - 并不会引入控制仿射系统的任何错误。这使我们能够使用双线性,低维替代模型来控制高维非线性系统。使用几个复杂性越来越多的示例,从悬挂振荡器到混乱的流体弹球,证明了所提出的方法的效率。

In recent years, the success of the Koopman operator in dynamical systems analysis has also fueled the development of Koopman operator-based control frameworks. In order to preserve the relatively low data requirements for an approximation via Dynamic Mode Decomposition, a quantization approach was recently proposed in [Peitz \& Klus, Automatica 106, 2019]. This way, control of nonlinear dynamical systems can be realized by means of switched systems techniques, using only a finite set of autonomous Koopman operator-based reduced models. These individual systems can be approximated very efficiently from data. The main idea is to transform a control system into a set of autonomous systems for which the optimal switching sequence has to be computed. In this article, we extend these results to continuous control inputs using relaxation. This way, we combine the advantages of the data efficiency of approximating a finite set of autonomous systems with continuous controls. We show that when using the Koopman generator, this relaxation --- realized by linear interpolation between two operators --- does not introduce any error for control affine systems. This allows us to control high-dimensional nonlinear systems using bilinear, low-dimensional surrogate models. The efficiency of the proposed approach is demonstrated using several examples with increasing complexity, from the Duffing oscillator to the chaotic fluidic pinball.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源