论文标题

实时多级对象检测和使用视觉增强算法识别

Real Time Multi-Class Object Detection and Recognition Using Vision Augmentation Algorithm

论文作者

Nayan, Al-Akhir, Saha, Joyeta, Mozumder, Ahamad Nokib, Mahmud, Khan Raqib, Azad, Abul Kalam Al

论文摘要

这项研究的目的是检测低分辨率和噪声的小物体。现有的实时对象检测算法基于深度卷积的深度神经网络,需要在整个图像上执行多级卷积和汇总操作,以提取图像的深层语义特征。检测模型对大对象的表现更好。重复卷积操作后,现有模型的功能并不能完全代表小物体的基本特征。我们引入了一种新颖的实时检测算法,该算法采用了上采样和跳过连接,以在学习任务中以不同的卷积级别提取多尺度特征,从而在检测小物体时表现出色。该模型的检测精度比最新模型更高,更快。

The aim of this research is to detect small objects with low resolution and noise. The existing real time object detection algorithm is based on the deep neural network of convolution need to perform multilevel convolution and pooling operations on the entire image to extract a deep semantic characteristic of the image. The detection models perform better for large objects. The features of existing models do not fully represent the essential features of small objects after repeated convolution operations. We have introduced a novel real time detection algorithm which employs upsampling and skip connection to extract multiscale features at different convolution levels in a learning task resulting a remarkable performance in detecting small objects. The detection precision of the model is shown to be higher and faster than that of the state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源