论文标题

Stahl定理对PT的全态嵌入的含义。 2:数值收敛

Implications of Stahl's Theorems to Holomorphic Embedding Pt. 2: Numerical Convergence

论文作者

Dronamraju, Abhinav, Li, Songyan, Li, Qirui, Li, Yuting, Tylavsky, Daniel, Shi, Di, Wang, Zhiwei

论文摘要

在电力工程圈中被称为Stahl的定理已被用来证明综合保证了全体形态嵌入方法(HEM),因为它适用于功率流问题。在这是两部分论文的第二部分中,我们研究了对HEM的数值收敛的影响以及Padé近似算法的数值特性。我们表明,即使收敛域与函数域相同,也不能保证用有限精度计算的Padé近似值序列的数值收敛。我们还表明,Padé近似值的收敛性能的研究是对功能分支点的位置的研究,该研究决定了分支切割拓扑和容量,因此,收敛速率。我们展示了选择不良的嵌入如何防止数值收敛。

What has become known as Stahl's Theorem in power-engineering circles has been used to justify a convergence guarantee of the Holomorphic Embedding Method (HEM) as it applies to the power-flow problem. In this, the second part of a two-part paper, we examine implications to numerical convergence of HEM and the numerical properties of a Padé approximant algorithm. We show that even if the convergence domain is identical to the function's domain, numerical convergence of the sequence of Padé approximants computed with finite precision is not guaranteed. We also show that the study of convergence properties of the Padé approximant is the study of the location of branch-points of the function, which dictate branch-cut topology and capacity and, therefore, convergence rate. We show how poorly chosen embeddings can prevent numerical convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源