论文标题

椭圆形曲线的Selmer组在功能场上的几何分布

The geometric distribution of Selmer groups of elliptic curves over function fields

论文作者

Feng, Tony, Landesman, Aaron, Rains, Eric M.

论文摘要

修复一个正整数$ n $和有限字段$ \ mathbb f_q $。我们研究了$ e $的排名,$ e $ $ e $的$ n $ -selmer集团以及$ e $ $ e $的$ n $ torsion as $ e $的$ n $ torsion a $ e $ a $ a $ e $远比固定高度$ d \ geq 2 $ by $ \ geq 2 $ + $ \ mathbb f_q(t)$变化。我们在$ Q $限制中计算此联合分配。我们还表明,此分布的“大$ Q $,然后大的高度”限制与Bhargava-Kane-Kane-Lenstra-Poonen-Rains预测的分布相符。

Fix a positive integer $n$ and a finite field $\mathbb F_q$. We study the joint distribution of the rank of $E$, the $n$-Selmer group of $E$, and the $n$-torsion in the Tate-Shafarevich group of $E$ as $E$ varies over elliptic curves of fixed height $d \geq 2$ over $\mathbb F_q(t)$. We compute this joint distribution in the large $q$ limit. We also show that the "large $q$, then large height" limit of this distribution agrees with the one predicted by Bhargava-Kane-Lenstra-Poonen-Rains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源