论文标题

数据驱动的人类互动表征基于模型的控制假体的控制

Data-driven Characterization of Human Interaction for Model-based Control of Powered Prostheses

论文作者

Gehlhar, Rachel, Chen, Yuxiao, Ames, Aaron D.

论文摘要

本文提出了一种以数据为驱动假体控制的方法,该方法可以实现稳定的行走,而无需在人类上使用其他传感器。关键思想是从运动捕获数据中提取名义步态和人类相互作用信息,并通过人类群体系统的动态模型重建步行行为。穿着动力假体的人的步行行为是通过运动捕获获得的,该运动产生肢体和关节轨迹。然后,通过解决旨在重建运动捕获观察到的步行行为的步态优化问题来获得标称轨迹。此外,通过在记录的步态之后模拟模型来恢复人与假体之间的相互作用力图,然后将其用于构建覆盖所有相互作用力谱的力管。最后,稳健的控制Lyapunov函数(CLF)二次编程(QP)控制器旨在确保管子内所有可能的相互作用力下的标称轨迹的收敛。仿真结果表明,与其他模型信息更少的控制方法相比,与其他控制方法相比,该控制器的跟踪性能改进了。

This paper proposes a data-driven method for powered prosthesis control that achieves stable walking without the need for additional sensors on the human. The key idea is to extract the nominal gait and the human interaction information from motion capture data, and reconstruct the walking behavior with a dynamic model of the human-prosthesis system. The walking behavior of a human wearing a powered prosthesis is obtained through motion capture, which yields the limb and joint trajectories. Then a nominal trajectory is obtained by solving a gait optimization problem designed to reconstruct the walking behavior observed by motion capture. Moreover, the interaction force profiles between the human and the prosthesis are recovered by simulating the model following the recorded gaits, which are then used to construct a force tube that covers all the interaction force profiles. Finally, a robust Control Lyapunov Function (CLF) Quadratic Programming (QP) controller is designed to guarantee the convergence to the nominal trajectory under all possible interaction forces within the tube. Simulation results show this controller's improved tracking performance with a perturbed force profile compared to other control methods with less model information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源