论文标题
非参数解卷积模型
Nonparametric Deconvolution Models
论文作者
论文摘要
我们描述了非参数反卷积模型(NDMS),这是一个贝叶斯非参数模型,用于收集数据,其中每个观察结果都是异质粒子特征的平均值。例如,这些类型的数据是在选举中发现的,我们观察到各个候选人或投票措施(特征)的个人公民投票(颗粒)的区域级别的投票(观察)(观察),其中每个选民都是特定选民队列或人口统计的一部分(因素)。像层次的dirichlet过程一样,NDMS依赖于两个dirichlet过程的两个层次来解释具有未知数的潜在因素的数据。每个观察结果都建立为这些潜在因素的加权平均值。与现有模型不同,NDM恢复了每个观察值的因子分布的局部变化。这允许NDMS既可以将每个观察结果都解散为其组成因素,还可以描述每个观察值特定的因子分布如何在观察值中有所不同,并偏离相应的全局因素。我们为这个模型家族提供了变异推理技术,并研究了其在加利福尼亚州的模拟数据和投票数据上的性能。我们表明,包括局部因素可以改善全球因素的估计,并为探索数据提供了新的脚手架。
We describe nonparametric deconvolution models (NDMs), a family of Bayesian nonparametric models for collections of data in which each observation is the average over the features from heterogeneous particles. For example, these types of data are found in elections, where we observe precinct-level vote tallies (observations) of individual citizens' votes (particles) across each of the candidates or ballot measures (features), where each voter is part of a specific voter cohort or demographic (factor). Like the hierarchical Dirichlet process, NDMs rely on two tiers of Dirichlet processes to explain the data with an unknown number of latent factors; each observation is modeled as a weighted average of these latent factors. Unlike existing models, NDMs recover how factor distributions vary locally for each observation. This uniquely allows NDMs both to deconvolve each observation into its constituent factors, and also to describe how the factor distributions specific to each observation vary across observations and deviate from the corresponding global factors. We present variational inference techniques for this family of models and study its performance on simulated data and voting data from California. We show that including local factors improves estimates of global factors and provides a novel scaffold for exploring data.