论文标题
均衡时间对称亚波长超材料中的特殊点
Exceptional points in parity-time-symmetric subwavelength metamaterials
论文作者
论文摘要
当将能源收益和损失的来源引入波浪碎片系统时,基本的数学公式将是非热的。这为存在特征模式线性依赖的特殊点的存在铺平了道路。这项工作的主要目标是研究高对比度亚波长超材料中的特殊点。我们首先研究一对亚元波谐振器的平价时间对称对,并证明该系统支持渐近的特殊点。这些是渐近参数中领先顺序的亚波长特征值和特征向量重合的点。然后,我们研究了平均时间对称亚波长超材料的进一步特性。首先,我们研究了由亚波长谐振器的重复平价时间对称对组成的元元素的外来散射行为。我们证明,这种结构的非官方性质意味着它在某些频率下表现出渐近的单向反射传播,并显示出接近这些频率的非凡传播。此后,我们考虑包含许多小型谐振器的空腔,并使用均匀化理论表明可以在宏观上复制非官方行为。
When sources of energy gain and loss are introduced to a wave-scattering system, the underlying mathematical formulation will be non-Hermitian. This paves the way for the existence of exceptional points, where eigenmodes are linearly dependent. The primary goal of this work is to study the existence of exceptional points in high-contrast subwavelength metamaterials. We begin by studying a parity-time-symmetric pair of subwavelength resonators and prove that this system supports asymptotic exceptional points. These are points at which the subwavelength eigenvalues and eigenvectors coincide at leading order in the asymptotic parameters. We then investigate further properties of parity-time-symmetric subwavelength metamaterials. First, we study the exotic scattering behaviour of a metascreen composed of repeating parity-time-symmetric pairs of subwavelength resonators. We prove that the non-Hermitian nature of this structure means that it exhibits asymptotic unidirectional reflectionless transmission at certain frequencies and demonstrate extraordinary transmission close to these frequencies. Thereafter, we consider cavities containing many small resonators and use homogenization theory to show that non-Hermitian behaviour can be replicated at the macroscale.