论文标题

$ r^*$:使用决策树分类器进行不确定性的强大MCMC收敛诊断

$R^*$: A robust MCMC convergence diagnostic with uncertainty using decision tree classifiers

论文作者

Lambert, Ben, Vehtari, Aki

论文摘要

在过去的三十年中,马尔可夫链蒙特卡洛(MCMC)已经改变了贝叶斯模型的推断:主要是因为这样,贝叶斯的推论现在是应用科学家的主力。在一般条件下,MCMC采样渐近地收敛于后验分布,但这无法保证其在有限时间内的性能。监测收敛的主要方法是运行多个链条并监测各个链的特征,并将其与整个人群进行比较:如果链内和链之间的摘要是可比的,则可以用来表明链条已融合到常见的平稳分布。在这里,我们介绍了一种新方法,以根据机器学习分类器模型成功区分单个链的方式来诊断收敛性。我们称此收敛度量$ r^*$。与主要的$ \ wideHat {r} $,$ r^*$相反,在所有参数中都是单个统计量,表明缺乏混合,尽管也可以确定单个变量对该指标的重要性。此外,$ r^*$不是基于采样分布的任何单一特征;取而代之的是,它使用链中的所有信息,包括由联合采样分布提供的信息,目前在现有方法中很大程度上忽略了该信息。我们建议使用两个不同的机器学习分类器计算$ r^*$ - 梯度提高回归树和随机森林 - 每个林都可以在不同尺寸的模型中很好地工作。由于这些方法中的每一种都输出了分类概率,因此作为副产品,我们以$ r^*$获得不确定性。该方法很容易实现,并且可以是对应用分析的MCMC收敛的补充额外检查。

Markov chain Monte Carlo (MCMC) has transformed Bayesian model inference over the past three decades: mainly because of this, Bayesian inference is now a workhorse of applied scientists. Under general conditions, MCMC sampling converges asymptotically to the posterior distribution, but this provides no guarantees about its performance in finite time. The predominant method for monitoring convergence is to run multiple chains and monitor individual chains' characteristics and compare these to the population as a whole: if within-chain and between-chain summaries are comparable, then this is taken to indicate that the chains have converged to a common stationary distribution. Here, we introduce a new method for diagnosing convergence based on how well a machine learning classifier model can successfully discriminate the individual chains. We call this convergence measure $R^*$. In contrast to the predominant $\widehat{R}$, $R^*$ is a single statistic across all parameters that indicates lack of mixing, although individual variables' importance for this metric can also be determined. Additionally, $R^*$ is not based on any single characteristic of the sampling distribution; instead it uses all the information in the chain, including that given by the joint sampling distribution, which is currently largely overlooked by existing approaches. We recommend calculating $R^*$ using two different machine learning classifiers - gradient-boosted regression trees and random forests - which each work well in models of different dimensions. Because each of these methods outputs a classification probability, as a byproduct, we obtain uncertainty in $R^*$. The method is straightforward to implement and could be a complementary additional check on MCMC convergence for applied analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源