论文标题

稳定线性系统的有限时间识别:最小二乘估计器的最佳性

Finite-time Identification of Stable Linear Systems: Optimality of the Least-Squares Estimator

论文作者

Jedra, Yassir, Proutiere, Alexandre

论文摘要

我们对稳定的线性时间传播系统的普通最小二乘(OLS)估计器的估计误差(OLS)估计器的估计误差进行了新的有限时间分析。我们表征观察到的样品的数量(观察到的轨迹的长度)足以使OLS估计器为$(\ varepsilon,δ)$ - PAC,即产生小于$ \ varepsilon $的估计误差,概率至少为$ 1-δ$。我们表明,该数字与现有样品复杂性下限[1,2]与通用乘法因子(独立于($ \ varepsilon,δ)$和系统的)。因此,本文确立了稳定系统OLS估计量的最佳性,结果在[1]中提出。与现有分析相比,我们对OLS估计器性能的分析更简单,更清晰,更容易解释。它依赖于协变量矩阵的新浓度结果。

We present a new finite-time analysis of the estimation error of the Ordinary Least Squares (OLS) estimator for stable linear time-invariant systems. We characterize the number of observed samples (the length of the observed trajectory) sufficient for the OLS estimator to be $(\varepsilon,δ)$-PAC, i.e., to yield an estimation error less than $\varepsilon$ with probability at least $1-δ$. We show that this number matches existing sample complexity lower bounds [1,2] up to universal multiplicative factors (independent of ($\varepsilon,δ)$ and of the system). This paper hence establishes the optimality of the OLS estimator for stable systems, a result conjectured in [1]. Our analysis of the performance of the OLS estimator is simpler, sharper, and easier to interpret than existing analyses. It relies on new concentration results for the covariates matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源