论文标题

通过同时转移源知识和目标相关性,无监督的域适应

Unsupervised Domain Adaptation Through Transferring both the Source-Knowledge and Target-Relatedness Simultaneously

论文作者

Tian, Qing, Zhu, Yanan, Ma, Chuang, Cao, Meng

论文摘要

无监督的域适应性(UDA)是机器学习和模式识别领域的新兴研究主题,该主题旨在通过从源域转移知识来帮助学习未标记的目标域。

Unsupervised domain adaptation (UDA) is an emerging research topic in the field of machine learning and pattern recognition, which aims to help the learning of unlabeled target domain by transferring knowledge from the source domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源