论文标题

多任务学习与强大的零件感知人员重新识别的粗略先验

Multi-task Learning with Coarse Priors for Robust Part-aware Person Re-identification

论文作者

Ding, Changxing, Wang, Kan, Wang, Pengfei, Tao, Dacheng

论文摘要

零件级的表示对于健壮的人重新识别(REID)很重要,但实际上,由于身体部位不对对准问题,特征质量受到了影响。在本文中,我们提出了一种称为多任务零件感知网络(MPN)的强大,紧凑且易于使用的方法,该方法旨在从行人图像中提取语义对齐的零件级特征。 MPN在训练阶段通过多任务学习(MTL)解决了身体部位的错位问题。更具体地说,它构建了一个主要任务(MT)和一个辅助任务(AT),为同一骨干模型顶部的每个身体部件(AT)。 ATS配备了身体部位位置的粗糙先验,用于训练图像。然后,通过优化MT参数以识别骨干模型中的部分相关通道,将身体部位的概念传递到MTS。概念转移是通过两种新颖的一致性策略来完成的:即,参数空间对齐方式通过硬参数共享和特征空间对齐方式以班级的方式进行。借助学习的高质量参数,MT可以从测试阶段中独立地从相关通道中提取语义对齐的零件级特征。 MPN具有三个关键优势:1)它不需要在推理阶段进行身体部位检测; 2)它的模型在训练和测试中都非常紧凑和有效; 3)在训练阶段,它仅需要易于获得的身体部位位置的粗略先验。在四个大规模REID数据库上进行的系统实验表明,MPN始终以大幅度的边距优于最先进的方法。代码可从https://github.com/wangkan0128/mpn获得。

Part-level representations are important for robust person re-identification (ReID), but in practice feature quality suffers due to the body part misalignment problem. In this paper, we present a robust, compact, and easy-to-use method called the Multi-task Part-aware Network (MPN), which is designed to extract semantically aligned part-level features from pedestrian images. MPN solves the body part misalignment problem via multi-task learning (MTL) in the training stage. More specifically, it builds one main task (MT) and one auxiliary task (AT) for each body part on the top of the same backbone model. The ATs are equipped with a coarse prior of the body part locations for training images. ATs then transfer the concept of the body parts to the MTs via optimizing the MT parameters to identify part-relevant channels from the backbone model. Concept transfer is accomplished by means of two novel alignment strategies: namely, parameter space alignment via hard parameter sharing and feature space alignment in a class-wise manner. With the aid of the learned high-quality parameters, MTs can independently extract semantically aligned part-level features from relevant channels in the testing stage. MPN has three key advantages: 1) it does not need to conduct body part detection in the inference stage; 2) its model is very compact and efficient for both training and testing; 3) in the training stage, it requires only coarse priors of body part locations, which are easy to obtain. Systematic experiments on four large-scale ReID databases demonstrate that MPN consistently outperforms state-of-the-art approaches by significant margins. Code is available at https://github.com/WangKan0128/MPN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源