论文标题

TKNN公式用于奇数尺寸的一般晶格哈密顿

TKNN formula for general lattice Hamiltonian in odd dimensions

论文作者

Fukaya, Hidenori, Onogi, Tetsuya, Yamaguchi, Satoshi, Wu, Xi

论文摘要

奇数尺寸中的拓扑绝缘子的特征是拓扑数。我们证明了浆果曲率的Chern特征给出的拓扑数与一般U(1)一般的U(1)仪表相互作用(包括非微型耦合)通过明确的计算在内的一般性汉密尔顿双线性的低能效应作用的拓扑数与Chern-Simons水平。一系列的病房 - 塔卡哈西身份对于将Chern-Simons的水平与绕组的数字联系起来至关重要,然后通过在颞矩上执行积分,可以将其直接简化为浆果曲率的Chern特征。

Topological insulators in odd dimensions are characterized by topological numbers. We prove the well-known relation between the topological number given by the Chern character of the Berry curvature and the Chern-Simons level of the low energy effective action for a general class of Hamiltonians bilinear in the fermion with general U(1) gauge interactions including non-minimal couplings by an explicit calculation. A series of Ward-Takahashi identities are crucial to relate the Chern-Simons level to a winding number, which could then be directly reduced to Chern character of Berry curvature by carrying out the integral over the temporal momenta.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源