论文标题
渐近保存方案的收敛分析,用于强磁化等离子体
Convergence Analysis of Asymptotic Preserving Schemes for Strongly Magnetized plasmas
论文作者
论文摘要
本文致力于对一类渐近保存粒子方案的收敛分析[Filbet \&Rodrigues,Siam J. Numer。肛门,54(2)(2016)],用于具有强大外部磁场的Vlasov方程。在此制度中,由于Larmor半径较小和等离子体频率,经典的粒子中粒子(PIC)方法在时间和空间步骤上受到相当限制的稳定性约束。我们将研究的渐近保留离散化可以消除这种约束,同时捕获大规模动力学,即使离散化(在时空中)太粗糙而无法捕获最快的尺度。关于离散化,刚度参数,初始数据和时间,我们的误差范围是明确的。
The present paper is devoted to the convergence analysis of a class of asymptotic preserving particle schemes [Filbet \& Rodrigues, SIAM J. Numer. Anal., 54 (2) (2016)] for the Vlasov equation with a strong external magnetic field. In this regime, classical Particle-In-Cell (PIC) methods are subject to quite restrictive stability constraints on the time and space steps, due to the small Larmor radius and plasma frequency. The asymptotic preserving discretization that we are going to study removes such a constraint while capturing the large-scale dynamics, even when the discretization (in time and space) is too coarse to capture fastest scales. Our error bounds are explicit regarding the discretization, stiffness parameter, initial data and time.