论文标题

批量重建具有紧凑空间的指标重建

Bulk reconstruction of metrics with a compact space asymptotically

论文作者

Hernández-Cuenca, Sergio, Horowitz, Gary T.

论文摘要

全息二元性意味着重力散装理论的几何特性应在双场理论中编码。这些自然包含在尺寸上的度量,这些度量在保形边界附近变得紧凑,就像任何渐近本地$ \ text {ads} _n \ times \ times \ times \ mathbb {s}^k $ spaceTime的情况一样。几乎所有关于度量重建的工作都忽略了这些维度,因此最多将适用于尺寸降低的指标。在这项工作中,我们概括了使用轻锥切割的批量重建方法,并提出了处方,以获得通用空间的完整高维度量,最多可达总体保形因子。我们首先扩展了轻锥切割的定义,以包括有关渐近紧凑型尺寸的信息,并表明可以从这些扩展的切割中恢复完整的共形度量。然后,我们给出了从双场理论中获得这些扩展削减的处方。仍然可以从相关器的散装点奇异点获得通常的切割的位置,并且可以通过使用二倍对较高尺寸散装场的kaluza-klein模式的合适组合来提取扩展切割中的新信息。

Holographic duality implies that the geometric properties of the gravitational bulk theory should be encoded in the dual field theory. These naturally include the metric on dimensions that become compact near the conformal boundary, as is the case for any asymptotically locally $\text{AdS}_n\times\mathbb{S}^k$ spacetime. Almost all previous work on metric reconstruction ignores these dimensions and would thus at most apply to dimensionally-reduced metrics. In this work, we generalize the approach to bulk reconstruction using light-cone cuts and propose a prescription to obtain the full higher-dimensional metric of generic spacetimes up to an overall conformal factor. We first extend the definition of light-cone cuts to include information about the asymptotic compact dimensions, and show that the full conformal metric can be recovered from these extended cuts. We then give a prescription for obtaining these extended cuts from the dual field theory. The location of the usual cuts can still be obtained from bulk-point singularities of correlators, and the new information in the extended cut can be extracted by using appropriate combinations of operators dual to Kaluza-Klein modes of the higher-dimensional bulk fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源