论文标题

超解决通用风格转移的协作蒸馏

Collaborative Distillation for Ultra-Resolution Universal Style Transfer

论文作者

Wang, Huan, Li, Yijun, Wang, Yuehai, Hu, Haoji, Yang, Ming-Hsuan

论文摘要

通用样式转移方法通常利用深卷积神经网络(CNN)模型(例如VGG-19)的丰富表示形式预先训练大量图像。尽管有效,但其应用受到大型模型大小的严重限制,以处理有限的内存,以处理超分辨率图像。在这项工作中,我们为基于编码器的神经样式转移提供了一种新的知识蒸馏方法(称为协作蒸馏),以减少卷积过滤器。主要思想的基础是一个发现编码器对构建独特的协作关系的发现,这被视为样式转移模型的新知识。此外,为了克服功能尺寸的不匹配,在应用协作蒸馏时,引入了线性嵌入损失,以推动学生网络以学习教师功能的线性嵌入。广泛的实验表明,即使模型大小降低了15.5倍,我们的方法将应用于不同的通用样式转移方法(WCT和ADAIN)的有效性。尤其是,在WCT中,我们首次在12GB GPU上实现了超分辨率(超过40兆像素)的超分辨率(超过40兆像素)。基于优化的样式化方案的进一步实验表明,我们算法在不同的风格范式上的普遍性。我们的代码和训练有素的模型可在https://github.com/mingsun-tse/collaborative-distillation上找到。

Universal style transfer methods typically leverage rich representations from deep Convolutional Neural Network (CNN) models (e.g., VGG-19) pre-trained on large collections of images. Despite the effectiveness, its application is heavily constrained by the large model size to handle ultra-resolution images given limited memory. In this work, we present a new knowledge distillation method (named Collaborative Distillation) for encoder-decoder based neural style transfer to reduce the convolutional filters. The main idea is underpinned by a finding that the encoder-decoder pairs construct an exclusive collaborative relationship, which is regarded as a new kind of knowledge for style transfer models. Moreover, to overcome the feature size mismatch when applying collaborative distillation, a linear embedding loss is introduced to drive the student network to learn a linear embedding of the teacher's features. Extensive experiments show the effectiveness of our method when applied to different universal style transfer approaches (WCT and AdaIN), even if the model size is reduced by 15.5 times. Especially, on WCT with the compressed models, we achieve ultra-resolution (over 40 megapixels) universal style transfer on a 12GB GPU for the first time. Further experiments on optimization-based stylization scheme show the generality of our algorithm on different stylization paradigms. Our code and trained models are available at https://github.com/mingsun-tse/collaborative-distillation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源