论文标题

具有较高推导的代数的扩展和变形

Extensions and deformations of algebras with higher derivations

论文作者

Das, Apurba

论文摘要

对联想代数的较高派生概括了高阶衍生物。我们称为由代数组成的元组和一个由Asshder对上的较高派生。我们定义了与代表中系数的Asshder对的共同体。接下来,我们研究中央扩展,Asshder对的Abelian扩展,并将它们与第二个同胞组相关联,并具有适当的系数。还考虑了由自我系数的共同学控制的Asshder对的变形。

Higher derivations on an associative algebra generalizes higher order derivatives. We call a tuple consisting of an algebra and a higher derivation on it by an AssHDer pair. We define a cohomology for AssHDer pairs with coefficients in a representation. Next, we study central extensions, abelian extensions of AssHDer pairs and relate them to the second cohomology group with appropriate coefficients. Deformations of AssHDer pairs are also considered which are governed by the cohomology with self coefficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源