论文标题
使用变异自动编码器对不确定电荷载的随机虚拟电池建模
Stochastic Virtual Battery Modeling of Uncertain Electrical Loads Using Variational Autoencoder
论文作者
论文摘要
在满足最终用户的偏好和约束的同时,有效利用灵活的载荷需要准确地估算电气负载提供的汇总预测灵活性。虚拟电池(VB)型号通常用于量化恒温负载(例如住宅空调,电动水机器)的预测灵活性,该灵活性通过一阶动力学(包括自我隔离率)以及功率和能量能力作为参数的一阶动力学对A(虚拟)能量状态的时间演变进行了建模。不确定性和有关最终USAGE和设备模型的信息,使确定性VB模型不切实际。在本文中,我们介绍了随机VB模型的概念,并提出了一个基于基于的深度学习算法的\ textit {变异自动编码器},以识别VB模型参数的概率分布。使用可用的传感器和仪表数据,所提出的算法不仅生成VB参数的点估计值,还会生成这些值围绕这些值的置信区间。提出的框架的有效性是在一系列电水的载荷中证明的,其运行是由不确定的用水量驱动的。
Effective utilization of flexible loads for grid services, while satisfying end-user preferences and constraints, requires an accurate estimation of the aggregated predictive flexibility offered by the electrical loads. Virtual battery (VB) models are often used to quantify the predictive flexibility in thermostatic loads (e.g. residential air-conditioners, electric water-heaters), which model the temporal evolution of a (virtual) energy state via a first order dynamics including self-dissipation rate, and power and energy capacities as parameters. Uncertainties and lack of information regarding end-usage and equipment models render deterministic VB models impractical. In this paper, we introduce the notion of stochastic VB models, and propose a \textit{variational autoencoder}-based deep learning algorithm to identify the probability distribution of the VB model parameters. Using available sensors and meters data, the proposed algorithm generates not only point estimates of the VB parameters, but also confidence intervals around those values. Effectiveness of the proposed frameworks is demonstrated on a collection of electric water-heater loads, whose operation is driven by uncertain water usage profiles.