论文标题

史密斯 - 特雷曼理论与联系原则

Smith-Treumann theory and the linkage principle

论文作者

Riche, Simon, Williamson, Geordie

论文摘要

我们在Iwahori - satake类别的Whittaker模型的背景下应用Treumann的“史密斯理论”。我们推断出还原代数群体的代表理论在积极特征的领域:(a)链接原理的几何证明; (b)根据$ \ ell $的基​​础,用于倾斜模块的字符公式,在所有块和所有特征上都有效。

We apply Treumann's "Smith theory for sheaves" in the context of the Iwahori--Whittaker model of the Satake category. We deduce two results in the representation theory of reductive algebraic groups over fields of positive characteristic: (a) a geometric proof of the linkage principle; (b) a character formula for tilting modules in terms of the $\ell$-canonical basis, valid in all blocks and in all characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源