论文标题
二阶拓扑绝缘子在无符合离散时间量子步行中
Second-order topological insulator in a coinless discrete-time quantum walk
论文作者
论文摘要
高阶拓扑绝缘子不仅表现出异国的散装对应原理,而且在量子计算中也具有重要的应用。但是,在量子步行中从未实现过它们。在本文中,我们构建了一个二维无金离散的量子步行,以模拟具有零维角状态的二阶拓扑绝缘子。我们表明,在多步离散时间量子步行后,可以通过步行者的概率分布来观察角状态和边缘状态。此外,我们通过引入静态障碍来证明拓扑角态的鲁棒性。最后,我们提出了一个可能的实验实现,以在三维综合光子电路中实现这一离散时间量子步行。我们的工作提供了一条新的途径,可以使用离散时间量子步行探索异国情调的高阶拓扑事项。
Higher-order topological insulators not only exhibit exotic bulk-boundary correspondence principle, but also have an important application in quantum computing. However, they have never been achieved in quantum walk. In this paper, we construct a two-dimensional coinless discrete-time quantum walk to simulate second-order topological insulator with zero-dimensional corner states. We show that both of the corner and edge states can be observed through the probability distribution of the walker after multi-step discrete-time quantum walks. Furthermore, we demonstrate the robustness of the topological corner states by introducing the static disorder. Finally, we propose a possible experimental implementation to realize this discrete-time quantum walk in a three-dimensional integrated photonic circuits. Our work offers a new route to explore exotic higher-order topological matters using discrete-time quantum walks.