论文标题

保留隐私流量流量预测:一种联合学习方法

Privacy-preserving Traffic Flow Prediction: A Federated Learning Approach

论文作者

Liu, Yi, Yu, James J. Q., Kang, Jiawen, Niyato, Dusit, Zhang, Shuyu

论文摘要

深度学习模型的现有交通流量预测方法基于政府和组织收集的大量数据集取得了出色的成功。但是,这些数据集可能包含大量用户的私人数据,这挑战了当前的预测方法,因为近年来用户隐私要求公众关注。因此,如何在保留隐私的同时制定准确的流量预测是一个重要的问题,并且在这两个目标之间进行了权衡。为了应对这一挑战,我们介绍了一种名为Federated Learning的隐私机器学习技术,并提出了一种基于联邦学习的封闭式复发单元神经网络算法(FIDGRU)进行交通流预测。 FedGru不同于当前的集中学习方法,并通过安全的参数聚合机制更新通用学习模型,而不是直接在组织之间共享原始数据。在安全参数聚合机制中,我们采用联合的平均算法来减少模型参数传输过程中的通信开销。此外,我们设计了一个联合公告协议,以提高Fedgru的可扩展性。我们还建议在应用FedGru算法之前将组织分组为群集,以通过将组织分组为群集来提出一个基于合奏的集群计划。通过对现实世界数据集的大量案例研究,可以表明,FedGru的预测准确性比先进的深度学习模型高90.96%,这些模型确认FedGru可以在不损害原始数据的隐私和安全性的情况下实现准确,及时的交通预测。

Existing traffic flow forecasting approaches by deep learning models achieve excellent success based on a large volume of datasets gathered by governments and organizations. However, these datasets may contain lots of user's private data, which is challenging the current prediction approaches as user privacy is calling for the public concern in recent years. Therefore, how to develop accurate traffic prediction while preserving privacy is a significant problem to be solved, and there is a trade-off between these two objectives. To address this challenge, we introduce a privacy-preserving machine learning technique named federated learning and propose a Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction. FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism rather than directly sharing raw data among organizations. In the secure parameter aggregation mechanism, we adopt a Federated Averaging algorithm to reduce the communication overhead during the model parameter transmission process. Furthermore, we design a Joint Announcement Protocol to improve the scalability of FedGRU. We also propose an ensemble clustering-based scheme for traffic flow prediction by grouping the organizations into clusters before applying FedGRU algorithm. Through extensive case studies on a real-world dataset, it is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models, which confirm that FedGRU can achieve accurate and timely traffic prediction without compromising the privacy and security of raw data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源