论文标题
定制的视频QOE估计,算法 - 敏锐的转移学习
Customized Video QoE Estimation with Algorithm-Agnostic Transfer Learning
论文作者
论文摘要
通过机器学习(ML)开发QOE模型,由于小型数据集,源域中的用户配置文件缺乏多样性以及QoE模型目标域的多样性,因此具有挑战性。此外,由于机器学习模型和从用户研究中收集的用户数据可能具有IPR或GDPR敏感,因此很难在研究实体之间共享数据集。这使得一个基于学习的基于学习的框架吸引了分享和汇总本地模型之间的学习知识,该模型将所获得的指标映射到用户QOE,例如平均意见分数(MOS)。在本文中,我们提出了一种基于转移学习的ML模型训练方法,该方法允许分散的本地模型可以在MOS上共享通用指标,以学习通用的基础模型,然后使用这些特定局部化(且潜在敏感的)QOE节点独有的其他功能来对通用基础模型进行进一步定制。我们表明,所提出的方法对特定的ML算法不可知,彼此堆叠在一起,因为它不需要协作局部节点来运行相同的ML算法。我们可复制的结果揭示了堆叠具有相应重量因子的各种通用和特定模型的优势。此外,我们确定相应局部QoE节点的算法和权重因子的最佳组合。
The development of QoE models by means of Machine Learning (ML) is challenging, amongst others due to small-size datasets, lack of diversity in user profiles in the source domain, and too much diversity in the target domains of QoE models. Furthermore, datasets can be hard to share between research entities, as the machine learning models and the collected user data from the user studies may be IPR- or GDPR-sensitive. This makes a decentralized learning-based framework appealing for sharing and aggregating learned knowledge in-between the local models that map the obtained metrics to the user QoE, such as Mean Opinion Scores (MOS). In this paper, we present a transfer learning-based ML model training approach, which allows decentralized local models to share generic indicators on MOS to learn a generic base model, and then customize the generic base model further using additional features that are unique to those specific localized (and potentially sensitive) QoE nodes. We show that the proposed approach is agnostic to specific ML algorithms, stacked upon each other, as it does not necessitate the collaborating localized nodes to run the same ML algorithm. Our reproducible results reveal the advantages of stacking various generic and specific models with corresponding weight factors. Moreover, we identify the optimal combination of algorithms and weight factors for the corresponding localized QoE nodes.