论文标题

通过评估医学成像诊断来降低手术风险

Reduction of Surgical Risk Through the Evaluation of Medical Imaging Diagnostics

论文作者

Grinet, Marco A. V. M., Garcia, Nuno M., Gouveia, Ana I. R., Moutinho, Jose A. F., Gomes, Abel J. P.

论文摘要

近年来,乳腺癌(BRCA)图像的计算机辅助诊断(CAD)一直是研究的活跃领域。这项研究的主要目标是开发可靠的自动方法,用于从诊断图像中检测和诊断不同类型的BRCA。在本文中,我们介绍了应用于磁共振(MRI)和BRCA患者乳房X线摄影图像的最先进的CAD方法的综述。该评论旨在通过纹理和统计分析从BRCA图像中提取的不同特征提供广泛的介绍,并分类能够使用元数据以汇总相关信息以协助肿瘤学家和放射学家的深度学习框架和数据结构。我们根据成像方式将现有文献分为现有文献,分为放射线学,机器学习或两者的组合。我们还强调了每种方式和方法的强度和劣势之间的差异,并通过定量比较来分析它们在检测BRCA时的性能。我们比较了实施CAD系统检测BRCA的各种方法的结果。每种方法都会审查标准工作流程组件并提供摘要表。我们提供了广泛的文献综述,对BRCA诊断和检测应用于数据制备,数据结构,前处理和后处理策略,对放射组学特征提取技术和机器学习方法进行了广泛的综述。通过组织病理学图像,MRI和乳房X线摄影图像,对用于BRCA检测的放射素特征提取和机器学习方法的兴趣越来越大。但是,没有CAD方法能够结合不同的数据类型来提供最佳的诊断结果。在医疗图像和患者数据中采用数据融合技术可以改善检测和分类结果。

Computer aided diagnosis (CAD) of Breast Cancer (BRCA) images has been an active area of research in recent years. The main goals of this research is to develop reliable automatic methods for detecting and diagnosing different types of BRCA from diagnostic images. In this paper, we present a review of the state of the art CAD methods applied to magnetic resonance (MRI) and mammography images of BRCA patients. The review aims to provide an extensive introduction to different features extracted from BRCA images through texture and statistical analysis and to categorize deep learning frameworks and data structures capable of using metadata to aggregate relevant information to assist oncologists and radiologists. We divide the existing literature according to the imaging modality and into radiomics, machine learning, or combination of both. We also emphasize the difference between each modality and methods strengths and weaknesses and analyze their performance in detecting BRCA through a quantitative comparison. We compare the results of various approaches for implementing CAD systems for the detection of BRCA. Each approachs standard workflow components are reviewed and summary tables provided. We present an extensive literature review of radiomics feature extraction techniques and machine learning methods applied in BRCA diagnosis and detection, focusing on data preparation, data structures, pre processing and post processing strategies available in the literature. There is a growing interest on radiomic feature extraction and machine learning methods for BRCA detection through histopathological images, MRI and mammography images. However, there isnt a CAD method able to combine distinct data types to provide the best diagnostic results. Employing data fusion techniques to medical images and patient data could lead to improved detection and classification results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源