论文标题
来自两个Clifford代数的最低理想的标准模型粒子含量,具有完全量规的对称性
The Standard Model particle content with complete gauge symmetries from the minimal ideals of two Clifford algebras
论文作者
论文摘要
在以前的作品的基础上,结果表明,复杂的Clifford代数$ \ Mathbb {C} \ ell(6)$的两个最小左左理想和两个最小的权利理想的$ \ Mathbb {c} \ ell(4)$作为一代leptons and Quarks and Quarks and Quage sommetry $ s $ s $ su(3)_c \ em(3)_c \ em(3) $ su(2)_l \ times u(1)_y $。 $ su(2)_l $弱对称性自然是手性的。结合$ \ mathbb {c} \ ell(6)$和$ \ mathbb {c} \ ell(4)$理想,标准模型的所有规格对称性以及其Lepton和Quark content for Matherations Agentherations consepentions conterals and Agentherations conterals contentals conterations的最小理想的尺寸都代表了不同物理状态的最小值。合并的理想可以写成$ \ mathbb {c} \ ell(6)\ otimes \ mathbb {c} \ ell(4)\ ell(4)\ conc \ mathbb {c} \ ell(10)$,以单独保留$ \ m athbb的结构(6)$(6)$(6)$(6)$(6)$(6)$(6)$(6)$(6)$(6)$(6) $ \ mathbb {c} \ ell(4)$物理状态的结构。该结果模型包括Georgi和Glashow $ SU(5)$ Grand Unified理论的许多吸引人特征,而无需引入质子衰减或其他未观察的过程。这种过程自然被排除在外,因为它们不单独保留$ \ mathbb {c} \ ell(6)$和$ \ mathbb {c} \ ell(4)$最低理想。
Building upon previous works, it is shown that two minimal left ideals of the complex Clifford algebra $\mathbb{C}\ell(6)$ and two minimal right ideals of $\mathbb{C}\ell(4)$ transform as one generation of leptons and quarks under the gauge symmetry $SU(3)_C\times U(1)_{EM}$ and $SU(2)_L\times U(1)_Y$ respectively. The $SU(2)_L$ weak symmetries are naturally chiral. Combining the $\mathbb{C}\ell(6)$ and $\mathbb{C}\ell(4)$ ideals, all the gauge symmetries of the Standard Model, together with its lepton and quark content for a single generation are represented, with the dimensions of the minimal ideals dictating the number of distinct physical states. The combined ideals can be written as minimal left ideals of $\mathbb{C}\ell(6)\otimes\mathbb{C}\ell(4)\cong \mathbb{C}\ell(10)$ in a way that preserves individually the $\mathbb{C}\ell(6)$ structure and $\mathbb{C}\ell(4)$ structure of physical states. This resulting model includes many of the attractive features of the Georgi and Glashow $SU(5)$ grand unified theory without introducing proton decay or other unobserved processes. Such processes are naturally excluded because they do not individually preserve the $\mathbb{C}\ell(6)$ and $\mathbb{C}\ell(4)$ minimal ideals.