论文标题
财产的示例(t)ii $ _1 $ taking timbuttal Group的因素
Examples of property (T) II$_1$ factors with trivial fundamental group
论文作者
论文摘要
在本文中,我们提供了第一个属性(t)$ \ rm II_1 $因子$ \ mathcal n $的示例,其中琐碎的基本组,$ \ MATHCAL F(\ MATHCAL N)= 1 $。我们的示例作为群体因素$ \ MATHCAL n = \ MATHCAL L(g)$,其中$ g $属于先前在文献中研究的两个不同的财产(T)组:Valette在\ Cite {Va04}中引入的组以及最近在\ cite {cdk19}中引入的{cdk19} interegradek-osin contunters the \ cite {va04}} buits contustry conters contunt \ cite {cdk19}。特别是,我们的结果提供了显式成对非同构特性(T)因子的连续体。
In this article we provide the first examples of property (T) $\rm II_1$ factors $\mathcal N$ with trivial fundamental group, $\mathcal F (\mathcal N)=1$. Our examples arise as group factors $\mathcal N=\mathcal L(G)$ where $G$ belong to two distinct families of property (T) groups previously studied in the literature: the groups introduced by Valette in \cite{Va04} and the ones introduced recently in \cite{CDK19} using the Belegradek-Osin Rips construction from \cite{BO06}. In particular, our results provide a continuum of explicit pairwise non-isomorphic property (T) factors.