论文标题

可整合的晶格模型和全息图

Integrable Lattice Models and Holography

论文作者

Ashwinkumar, Meer

论文摘要

我们在$ d \ times \ mathbb {c} $(其中$ d $是一个磁盘)上研究了四维的Chern-Simons理论,该理论是从Costello,Witten和Yamazaki的工作中描述Yang-Baxter方程的理性解决方案的。我们发现该理论对于边界理论是双重的,这是二维手性WZW模型的三维类似物。这种边界理论产生了当前的代数,该代数原来是“分析性的”环形谎言代数。此外,我们还展示了如何通过三维WZW模型中本地运算符的边界相关函数来捕获两个和三个威尔逊线的某些散装相关函数。特别是,我们纯粹是从边界理论中重现了对理性R-Matrix的领先和超级非平地贡献。

We study four-dimensional Chern-Simons theory on $D \times \mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual to a boundary theory, that is a three-dimensional analogue of the two-dimensional chiral WZW model. This boundary theory gives rise to a current algebra that turns out to be an "analytically-continued" toroidal Lie algebra. In addition, we show how certain bulk correlation functions of two and three Wilson lines can be captured by boundary correlation functions of local operators in the three-dimensional WZW model. In particular, we reproduce the leading and subleading nontrivial contributions to the rational R-matrix purely from the boundary theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源