论文标题

使用转移学习对深血管复合物的微血管分割和毛细血管间区域定量

Microvasculature Segmentation and Inter-capillary Area Quantification of the Deep Vascular Complex using Transfer Learning

论文作者

Lo, Julian, Heisler, Morgan, Vanzan, Vinicius, Karst, Sonja, Matovinovic, Ivana Zadro, Loncaric, Sven, Navajas, Eduardo V., Beg, Mirza Faisal, Sarunic, Marinko V.

论文摘要

目的:光学相干断层扫描(OCT-A)允许可视化因糖尿病性视网膜病变(DR)引起的视网膜循环变化,这是糖尿病的微血管并发症。我们证明了使用卷积神经网络(CNN)进行浅表毛细神经丛和深血管复合物(SCP和DVC)的血管形态的准确分割,以进行定量分析。 方法:使用Zeiss plexelite获取具有6x6mm视野(FOV)的视网膜OCT-A。多体积采集和平均增强了用于训练CNN的血管网络对比度。我们从使用不同的OCT系统获得的SCP较小FOV的CNN中使用了对76张图像的CNN进行转移学习。对代表性的DR患者的自动血管分割进行了灌注的定量分析。 结果:OCT-A图像的自动分割分别保持了SCP和DVC的分层分支和小叶形态。该网络的精度为0.8599,骰子指数为0.8618。对于DVC,精度为0.7986,骰子指数为0.8139。 SCP的评估者比较的准确性和骰子指数分别为0.8300和0.6700,DVC的比较分别为0.8300和0.6874和0.6874和0.7416。 结论:转移学习减少了所需的手动注销图像的量,同时产生了SCP和DVC的高质量自动分割。使用高质量的训练数据可保留每一层毛细血管网络的特征外观。 翻译相关性:CNN的准确视网膜微脉管分割可改善糖尿病性视网膜病的灌注分析。

Purpose: Optical Coherence Tomography Angiography (OCT-A) permits visualization of the changes to the retinal circulation due to diabetic retinopathy (DR), a microvascular complication of diabetes. We demonstrate accurate segmentation of the vascular morphology for the superficial capillary plexus and deep vascular complex (SCP and DVC) using a convolutional neural network (CNN) for quantitative analysis. Methods: Retinal OCT-A with a 6x6mm field of view (FOV) were acquired using a Zeiss PlexElite. Multiple-volume acquisition and averaging enhanced the vessel network contrast used for training the CNN. We used transfer learning from a CNN trained on 76 images from smaller FOVs of the SCP acquired using different OCT systems. Quantitative analysis of perfusion was performed on the automated vessel segmentations in representative patients with DR. Results: The automated segmentations of the OCT-A images maintained the hierarchical branching and lobular morphologies of the SCP and DVC, respectively. The network segmented the SCP with an accuracy of 0.8599, and a Dice index of 0.8618. For the DVC, the accuracy was 0.7986, and the Dice index was 0.8139. The inter-rater comparisons for the SCP had an accuracy and Dice index of 0.8300 and 0.6700, respectively, and 0.6874 and 0.7416 for the DVC. Conclusions: Transfer learning reduces the amount of manually-annotated images required, while producing high quality automatic segmentations of the SCP and DVC. Using high quality training data preserves the characteristic appearance of the capillary networks in each layer. Translational Relevance: Accurate retinal microvasculature segmentation with the CNN results in improved perfusion analysis in diabetic retinopathy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源