论文标题
通过LindströmGesselViennot引理的舒尔多项式
Schur Polynomials through Lindström Gessel Viennot Lemma
论文作者
论文摘要
在本文中,我们使用LindströmGesselViennot引理为Schur多项式的身份提供了简短,组合,可视化的证明 - 年轻的Tableaux的单一元素等于确定因素的商。作为副产品,我们可以证明无言语的范德曼德决定因素。我们还证明了凯奇的身份。在评论中,我们讨论了阶乘schur多项式,双重库奇身份和关系纽顿插值公式。
In this article, we use Lindström Gessel Viennot Lemma to give a short, combinatorial, visualizable proof of the identity of Schur polynomials -- the sum of monomials of Young tableaux equals to the quotient of determinants. As a by-product, we have a proof of Vandermonde determinant without words. We also prove the cauchy identity. In the remarks, we discuss factorial Schur polynomials, dual Cauchy identity and the relation beteen Newton interpolation formula.