论文标题

N-Per-nash游戏中严格的NASH平衡的几何选择的熵空间

Entropy-Norm space for geometric selection of strict Nash equilibria in n-person games

论文作者

Leoneti, A. B., Prataviera, G. A.

论文摘要

是出于经验证据的动机,表明小组决策中的个人同时渴望最大化效用并避免不平等,我们提出了一个基于熵 - 现象对的标准,用于在N-Per-sern Games中进行严格的NASH平衡。为此,我们介绍了熵空间中N-PER的NASH平衡实用程序的映射。我们建议最合适的群体选择是最接近最大的熵熵 - 熵 - 熵 - 熵空间对的平衡。该标准的连续应用允许在N-Per-Merial游戏会计中订购可能的NASH Equilibria,同时订购了玩家收益的平等和实用性。讨论了某些特殊情况的局限性。此外,应用了提出的标准,并将其与小组决策实验的结果进行了比较。

Motivated by empirical evidence that individuals within group decision making simultaneously aspire to maximize utility and avoid inequality we propose a criterion based on the entropy-norm pair for geometric selection of strict Nash equilibria in n-person games. For this, we introduce a mapping of an n-person set of Nash equilibrium utilities in an Entropy-Norm space. We suggest that the most suitable group choice is the equilibrium closest to the largest entropy-norm pair of a rescaled Entropy-Norm space. Successive application of this criterion permits an ordering of the possible Nash equilibria in an n-person game accounting simultaneously equality and utility of players payoffs. Limitations of this approach for certain exceptional cases are discussed. In addition, the criterion proposed is applied and compared with the results of a group decision making experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源