论文标题
使用数值模拟对永久磁多物的条纹场进行建模
Modeling the fringe field of permanent magnet multipoles using numerical simulations
论文作者
论文摘要
永久磁铁多物(PMM)被广泛用于加速器中,以将粒子束聚焦或离子源中的血浆。由PMM创建的实际磁场由磁场仿真软件计算,然后通过3维磁场映射在粒子跟踪代码中使用。一种常见的替代方法是使用所谓的“硬边”模型,该模型在假设空条纹场的情况下给出了PMM内部磁场的近似值。这项工作提出了对PMM条纹场特性的研究。 PMM磁场的分析模型是使用傅立叶多极扩展开发的。具有独特参数$λ$的一般轴向电位函数,能够重现具有对PMM长度的显式依赖性的实际PMM磁场(包括其两个条纹场)。得出了包括轴向条纹场的分析一阶模型。这个简单的模型符合Maxwell方程(Curl(B)= 0和Div(B)= 0),并且在需要快速分析计算时可以有利地替换“硬边缘”模型。通过$ {χ^2} $估算器评估高阶分析多极扩展模型质量。潜在函数参数$λ$的一般依赖性是对四极,六键和多极的PMM几何形状的函数,从而使多极几何形状是输入参数的模拟程序中使用开发的模型。
Permanent Magnet multipoles (PMM) are widely used in accelerators to either focus particle beams or confine plasma in ion sources. The real magnetic field created by PMM is calculated by magnetic field simulation software and then used in particle tracking codes by means of 3 dimensional magnetic field map. A common alternative is to use the so-called 'hard edge' model, which gives an approximation of the magnetic field inside the PMM assuming a null fringe field. This work proposes an investigation of the PMM fringe field properties. An analytical model of PMM magnetic field is developed using the Fourier multipole expansion. A general axial potential function with a unique parameter $λ$, able to reproduce the actual PMM magnetic field (including its two fringe fields) with an explicit dependence on the PMM length is proposed. An analytical first order model including the axial fringe field is derived. This simple model complies with the Maxwell equations (curl(B)=0 and div(B)=0) and can replace advantageously the 'hard edge' model when fast analytical calculation are required. Higher order analytical multipole expansion model quality is assessed by means of ${χ^2}$ estimators. The general dependence of the potential function parameter $λ$ is given as a function of the PMM geometry for quadrupole, hexapole and multipole, allowing to use the developed model in simulation programs where the multipole geometry is an input parameter.