论文标题

在时间依赖电位井中移动的颗粒的混沌扩散

Chaotic diffusion for particles moving in a time dependent potential well

论文作者

Leonel, Edson D., Kuwana, Celia Mayumi, Yoshida, Makoto, de Oliveira, Juliano Antonio

论文摘要

通过使用两个不同的过程来描述在时间依赖势孔中移动的颗粒的混沌扩散:(i)通过直接演化描述动力学的映射的直接演化; (ii)通过扩散方程的解。扩散粒子的动态是通过使用二维非线性区域保留变量能量和时间的映射的。系统的相空间混合在一起,其中含有混乱,周期区域和跨越曲线的不变区,限制了混乱颗粒的扩散。颗粒集合的混沌演化被视为随机颗粒运动,因此被扩散方程式描述。边界条件强加了颗粒无法跨越不变的跨越曲线,作为扩散的上限,也不能跨越粒子从移动电位良好的时间逃脱的能量。扩散系数是通过映射方程确定的,而扩散方程的分析解使在特定时间找到具有一定能量的给定粒子的概率。概率的力量定性地描述了通过数值模拟获得的平均能量的行为,该行为是作为时间的函数以及问题的某些控制参数进行了研究。

The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and ; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源