论文标题
APCOA:协变量的主坐标分析
aPCoA: Covariate Adjusted Principal Coordinates Analysis
论文作者
论文摘要
在诸如生态学,微生物学和基因组学之类的领域中,非欧国人距离被广泛用于描述样品之间的成对差异。鉴于这些成对距离,主坐标分析(PCOA)通常用于构建数据的可视化。但是,混淆的协变量可以使与难以观察的科学问题有关的模式产生模式。我们将APCOA作为一种易于使用的工具(既可以用作R包和闪亮的应用程序),可以在此上下文中改善数据可视化,从而增强了感兴趣的影响。
In fields such as ecology, microbiology, and genomics, non-Euclidean distances are widely applied to describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis (PCoA) is commonly used to construct a visualization of the data. However, confounding covariates can make patterns related to the scientific question of interest difficult to observe. We provide aPCoA as an easy-to-use tool, available as both an R package and a Shiny app, to improve data visualization in this context, enabling enhanced presentation of the effects of interest.