论文标题

APCOA:协变量的主坐标分析

aPCoA: Covariate Adjusted Principal Coordinates Analysis

论文作者

Shi, Yushu, Zhang, Liangliang, Do, Kim-Anh, Peterson, Christine, Jenq, Robert

论文摘要

在诸如生态学,微生物学和基因组学之类的领域中,非欧国人距离被广泛用于描述样品之间的成对差异。鉴于这些成对距离,主坐标分析(PCOA)通常用于构建数据的可视化。但是,混淆的协变量可以使与难以观察的科学问题有关的模式产生模式。我们将APCOA作为一种易于使用的工具(既可以用作R包和闪亮的应用程序),可以在此上下文中改善数据可视化,从而增强了感兴趣的影响。

In fields such as ecology, microbiology, and genomics, non-Euclidean distances are widely applied to describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis (PCoA) is commonly used to construct a visualization of the data. However, confounding covariates can make patterns related to the scientific question of interest difficult to observe. We provide aPCoA as an easy-to-use tool, available as both an R package and a Shiny app, to improve data visualization in this context, enabling enhanced presentation of the effects of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源