论文标题

k3表面的所有等级s-二态度的证明

A proof of all ranks S-duality conjecture for K3 surfaces

论文作者

Jiang, Yunfeng, Tseng, Hsian-Hua

论文摘要

Using the multiple cover formula of Y. Toda for counting invariants of semistable twisted sheaves over twisted local K3 surfaces we calculate the $\SU(r)/\zz_r$-Vafa-Witten invariants for K3 surfaces for any rank $r$ for the Langlands dual group $\SU(r)/\zz_r$ of the gauge group $\SU(r)$.我们根据Tanaka-thomas的结果,概括并证明K3表面的VAFA-Witten的S-二态度猜想。

Using the multiple cover formula of Y. Toda for counting invariants of semistable twisted sheaves over twisted local K3 surfaces we calculate the $\SU(r)/\zz_r$-Vafa-Witten invariants for K3 surfaces for any rank $r$ for the Langlands dual group $\SU(r)/\zz_r$ of the gauge group $\SU(r)$. We generalize and prove the S-duality conjecture of Vafa-Witten for K3 surfaces in any rank $r$ based on the result of Tanaka-Thomas for the $\SU(r)$-Vafa-Witten invariants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源