论文标题

在非炎热相似性转化下,拓扑绝缘子的边缘状态和异常散装对应关系

Defective Edge states and Anomalous Bulk-boundary Correspondence for Topological Insulators under Non-Hermitian Similarity Transformation

论文作者

Wang, Can, Wang, Xiao-Ran, Guo, Cui-Xian, Kou, Su-Peng

论文摘要

众所周知,由于非炎热的拓扑系统,由于非铁皮皮肤效应,散装对应关系被分解。在本文中,通过使用一维Su-Schriefferheeger模型和二维(变形)Qi-Wu-Zhang模型作为示例,我们将重点介绍在非亚米特式相似性转化下的非荷米型皮肤效应系统的特殊类型的非炎性拓扑系统。在这些非热系统中,发现了有缺陷的边缘状态和散装对应关系的分解。为了表征拓扑特性,我们介绍了一种新型的反转对称性拓扑拓扑tolist-total Z2拓扑不变性。在拓扑阶段,出现有缺陷的边缘状态。在有效的边缘哈密顿量的帮助下,我们发现有缺陷的边缘状态受(广义)手性对称性的保护,因此(奇异的)有缺陷的边缘状态对破坏手性对称性的扰动不稳定。此外,在较高维度的反转对称性的非赫米特拓扑绝缘子中,结果将其推广。这项工作可以帮助人们理解非热拓扑系统的边缘状态有缺陷的状态和散装通信的分解。

It was known that for non-Hermitian topological systems due to the non-Hermitian skin effect, the bulk-edge correspondence is broken down. In this paper, by using one-dimensional Su-SchriefferHeeger model and two-dimensional (deformed) Qi-Wu-Zhang model as examples, we focus on a special type of non-Hermitian topological system without non-Hermitian skin effect-topological systems under non-Hermitian similarity transformation. In these non-Hermitian systems, the defective edge states and the breakdown of bulk-edge correspondence are discovered. To characterize the topological properties, we introduce a new type of inversion symmetry-protected topological invariant-total Z2 topological invariant. In topological phases, defective edge states appear. With the help of the effective edge Hamiltonian, we find that the defective edge states are protected by (generalized) chiral symmetry and thus the (singular) defective edge states are unstable against the perturbation breaking the chiral symmetry. In addition, the results are generalized to nonHermitian topological insulators with inversion symmetry in higher dimensions. This work could help people to understand the defective edge states and the breakdown of bulk-edge correspondence for non-Hermitian topological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源