论文标题
3D异质各向异性培养基中的本征:第五部分 - 动力学,变分配方
Eigenrays in 3D heterogeneous anisotropic media: Part V -- Dynamics, Variational formulation
论文作者
论文摘要
这项研究的V部分,VI和VII专门用于计算沿着III中数值获得的固定射线的近距离射线和动态特性的计算。在此部分(V部分)中,我们制定了线性的二阶,雅各比动态射线跟踪方程。在第六部分中,我们将拉格朗日式和哈密顿的方法与异质各向同性和各向异性培养基中的动态射线追踪进行了比较。我们证明了这两种方法是兼容的,并得出了拉格朗日人和哈密顿的黑森州矩阵之间的关系。在第七部分中,我们应用了用于运动射线跟踪的类似的有限元求解器,以计算沿射线和任何点之间的动态特性。我们研究中的动态特征包括由于苛性碱(即,在3D异质性各向异性培养基中传播的波的振幅和绿色功能的幅度和相位)引起的相对几何扩散和相位校正因子。雅各比方程的基本解是平面在沿中央射线的每个点的射线方向的平面射线的移位矢量。一般的近轴射线由多达四个基本矢量溶液的线性组合定义,每种射线对应于与源处的射线坐标相关的特定初始条件。我们用两对初始条件集定义了四个基本解决方案:点源和平面波。对于提出的点源射线坐标和初始条件,我们得出了射线jacobian,并将其与一般各向异性的相对几何扩散相关联。最后,我们引入了一个新的动态参数,称为归一化的几何扩散,考虑了传播波/射线现象的复杂性的量度,因此,我们建议使用基于此参数作为与给定射线溶液相关的合格因素使用标准。
Parts V, VI and VII of this study are dedicated to the computation of paraxial rays and dynamic characteristics along the stationary rays obtained numerically in Part III. In this part (Part V), we formulate the linear, second-order, Jacobi dynamic ray tracing equation. In Part VI, we compare the Lagrangian and Hamiltonian approaches to the dynamic ray tracing in heterogeneous isotropic and anisotropic media; we demonstrate that the two approaches are compatible and derive the relationships between the Lagrangian's and Hamiltonian's Hessian matrices. In Part VII, we apply a similar finite-element solver, as used for the kinematic ray tracing, to compute the dynamic characteristics between the source and any point along the ray. The dynamic characteristics in our study include the relative geometric spreading and the phase correction factor due to caustics (i.e., the amplitude and the phase of the Green's function of waves propagating in 3D heterogeneous anisotropic media). The basic solution of the Jacobi equation is a shift vector of a paraxial ray in the plane normal to the ray direction at each point along the central ray. A general paraxial ray is defined by a linear combination of up to four basic vector solutions, each corresponds to specific initial conditions related to the ray coordinates at the source. We define the four basic solutions with two pairs of initial condition sets: point-source and plane-wave. For the proposed point-source ray coordinates and initial conditions, we derive the ray Jacobian and relate it to the relative geometric spreading for general anisotropy. Finally, we introduce a new dynamic parameter, referred as the normalized geometrical spreading, considered a measure of complexity of the propagated wave/ray phenomena, and hence, we propose using a criterion based on this parameter as a qualifying factor associated with the given ray solution.