论文标题

明智的滑动窗口细分:轨迹分割的分类辅助方法

Wise Sliding Window Segmentation: A classification-aided approach for trajectory segmentation

论文作者

Etemad, Mohammad, Etemad, Zahra, Soares, Amilcar, Bogorny, Vania, Matwin, Stan, Torgo, Luis

论文摘要

从许多不同的来源生成大量的移动性数据,并为此数据提出了几种数据挖掘方法。轨迹数据挖掘的最关键步骤之一是分割。该任务可以看作是一个预处理步骤,其中轨迹分为几个有意义的连续子序列。此过程是必要的,因为轨迹模式可能无法在整个轨迹中,而是在轨迹部分中。在这项工作中,我们提出了一种监督的轨迹分割算法,称为Wise滑动窗口分割(WS-II)。它处理轨迹坐标以查找空间和时间的行为变化,生成一个误差信号,该信号进一步用于训练二进制分类器以分割轨迹数据。该算法是灵活的,可以在不同的域中使用。我们通过来自不同领域(气象,捕鱼和个人运动)的三个真实数据集评估我们的方法,并将其与其他四种轨迹分割算法进行比较:OWS,GRASP-UTS,CB-SMOT和SPD。我们观察到,所提出的算法在纯度和覆盖范围的谐波平均值方面具有统计学上显着差异的所有数据集的最高性能。

Large amounts of mobility data are being generated from many different sources, and several data mining methods have been proposed for this data. One of the most critical steps for trajectory data mining is segmentation. This task can be seen as a pre-processing step in which a trajectory is divided into several meaningful consecutive sub-sequences. This process is necessary because trajectory patterns may not hold in the entire trajectory but on trajectory parts. In this work, we propose a supervised trajectory segmentation algorithm, called Wise Sliding Window Segmentation (WS-II). It processes the trajectory coordinates to find behavioral changes in space and time, generating an error signal that is further used to train a binary classifier for segmenting trajectory data. This algorithm is flexible and can be used in different domains. We evaluate our method over three real datasets from different domains (meteorology, fishing, and individuals movements), and compare it with four other trajectory segmentation algorithms: OWS, GRASP-UTS, CB-SMoT, and SPD. We observed that the proposed algorithm achieves the highest performance for all datasets with statistically significant differences in terms of the harmonic mean of purity and coverage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源