论文标题

分散控制器的图形神经网络

Graph Neural Networks for Decentralized Controllers

论文作者

Gama, Fernando, Tolstaya, Ekaterina, Ribeiro, Alejandro

论文摘要

由自主代理组成的动力系统在许多相关问题(例如多代理机器人技术,智能电网或智能城市)中出现。控制这些系统对于确保成功部署至关重要。最佳的集中控制器很容易获得,但就可伸缩性和实际实施而言,面对限制。另一方面,很难找到最佳的分散控制器。在本文中,我们建议使用图形神经网络(GNN)从数据中学习分散控制器的框架。虽然GNN是自然分布的架构,使其非常适合任务,但我们也适应它们以处理延迟的通信。此外,它们是均衡且稳定的,从而导致良好的可伸缩性和可传递性能。探索了羊群的问题,以说明GNN在学习分散控制器中的潜力。

Dynamical systems comprised of autonomous agents arise in many relevant problems such as multi-agent robotics, smart grids, or smart cities. Controlling these systems is of paramount importance to guarantee a successful deployment. Optimal centralized controllers are readily available but face limitations in terms of scalability and practical implementation. Optimal decentralized controllers, on the other hand, are difficult to find. In this paper, we propose a framework using graph neural networks (GNNs) to learn decentralized controllers from data. While GNNs are naturally distributed architectures, making them perfectly suited for the task, we adapt them to handle delayed communications as well. Furthermore, they are equivariant and stable, leading to good scalability and transferability properties. The problem of flocking is explored to illustrate the potential of GNNs in learning decentralized controllers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源