论文标题
随机网络上ZGB模型的相图
Phase diagrams of the ZGB model on random networks
论文作者
论文摘要
在这项工作中,我们重新审视了ZGB模型,以研究两个众所周知的随机网络在催化表面的作用时研究其相图的行为:随机几何图和Erdös-rényi网络。因此,连通性以及这些网络节点的平均邻居数量可以根据其控制参数,邻居半径$α$和链接概率$ p $变化。此外,ZGB模型的催化反应受参数$ y $,一氧化碳分子在催化表面上的吸附速率的控制。因此,为了研究两个随机网络的模型的相图,我们在空间参数($ y,α$)和($ y,p $)中进行了广泛的稳态蒙特卡洛模拟,并表明在整个研究间隔中,在整个图形中仍然存在不连续的网络拓扑特征,从而极大地影响了连续的相变。
In this work, we revisited the ZGB model in order to study the behavior of its phase diagram when two well-known random networks play the role of the catalytic surfaces: the Random Geometric Graph and the Erdös-Rényi network. The connectivity and, therefore, the average number of neighbors of the nodes of these networks can vary according to their control parameters, the neighborhood radius $α$ and the linking probability $p$, respectively. In addition, the catalytic reactions of the ZGB model are governed by the parameter $y$, the adsorption rate of carbon monoxide molecules on the catalytic surface. So, to study the phase diagrams of the model on both random networks, we carried out extensive steady-state Monte Carlo simulations in the space parameters ($y,α$) and ($y,p$) and showed that the continuous phase transition is greatly affected by the topological features of the networks while the discontinuous one remains present in the diagram throughout the interval of study.