论文标题

红蓝色加权顶点盖的参数化算法

Parameterized Algorithms for Red-Blue Weighted Vertex Cover on Trees

论文作者

Veerathu, Vishnu, Tripathi, Yogesh

论文摘要

\ textproc {加权顶点盖}是广泛研究的NP完整问题的变体,\ textproc {cortex Cover},其中给我们一个图形,$ g =(v,e,w)$,function $ w:v \ v \ rightArrow \ rightarrow \ rightarrow \ rightarrow \ m nathbb {q}^{q}^{q}^{+} $ and parameter and parameTer and parameter&a parameter and parameter and parameTer&a parameter&a parameter&a parameter&a parameter $ k $ k $。目的是确定是否存在顶点盖,$ s $,以便$ \ sum_ {v \ in s} w(v)\ leq k $。在我们的工作中,我们首先研究了\ textproc {加权顶点盖}的硬度,然后通过$ l $和$ k $在参数化下检查此问题,其中$ l $是具有分数权重的顶点的数量。然后,我们在树上研究\ textProc {red-Blue加权顶点盖}问题。在这个问题中,我们给我们一棵树,$ t =(v,e,w)$,其中函数$ w:v \ rightArrow \ mathbb {q}^{+} $,a函数$ c:v \ rightArrow \ rightArrow \ r,b \ \} $和两个参数$ k $和$ k_r $。我们必须确定是否存在$ s $的顶点盖,以便$ \ sum_ {v \ in s} w(v)\ leq k $和$ \ sum _ {\ ordack {v \ in s \\ c(v)= r}}} = r}} w(v)w(v)我们通过应用不同的还原技术和有意义的参数化来解决这个问题。我们还研究了此问题的一些限制性版本。

\textproc{Weighted Vertex Cover} is a variation of an extensively studied NP-complete problem, \textproc{Vertex Cover}, in which we are given a graph, $G = (V,E,w)$, where function $w:V \rightarrow \mathbb{Q}^{+}$ and a parameter $k$. The objective is to determine if there exists a vertex cover, $S$, such that $\sum_{v \in S}w(v) \leq k$. In our work, we first study the hardness of \textproc{Weighted Vertex Cover} and then examine this problem under parameterization by $l$ and $k$, where $l$ is the number of vertices with fractional weights. Then, we study the \textproc{Red-Blue Weighted Vertex Cover} problem on trees in detail. In this problem, we are given a tree, $T=(V,E,w)$, where function $w:V \rightarrow \mathbb{Q}^{+}$, a function $c:V \rightarrow \{R,B\}$ and two parameters $k$ and $k_R$. We have to determine if there exists a vertex cover, $S$, such that $\sum_{v \in S}w(v) \leq k$ and $\sum_{\substack{v \in S\\ c(v) = R}}w(v) \leq k_R$. We tackle this problem by applying different reduction techniques and meaningful parameterizations. We also study some restrictive versions of this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源