论文标题
奇怪的谎言表示的多个倒数
The plethystic inverse of the odd Lie representations
论文作者
论文摘要
$ lie_n的Frobenius特征,$ $ SYMETRIC GROUP $ s_n $的表示,由Free Lie代数的多连线组件提供,众所周知,可以满足许多有趣的杂质身份。在本文中,我们证明了理查德·史丹利(Richard Stanley)的猜想,建立了奇数谎言特征的总和$ \ sum_ {n \ geq 0} lie_ {2n+1} $的多个倒数。我们从钩子索引的不可减数和谎言表示方面,获得了$ s_n $的常规表示的显而易见的新的分解。我们确定了奇数谎言特征的交替总和的多个逆。
The Frobenius characteristic of $Lie_n,$ the representation of the symmetric group $S_n$ afforded by the multilinear component of the free Lie algebra, is known to satisfy many interesting plethystic identities. In this paper we prove a conjecture of Richard Stanley establishing the plethystic inverse of the sum $\sum_{n\geq 0} Lie_{2n+1}$ of the odd Lie characteristics. We obtain an apparently new plethystic decomposition of the regular representation of $S_n$ in terms of irreducibles indexed by hooks, and the Lie representations. We determine the plethystic inverse of the alternating sum of the odd Lie characteristics.