论文标题

多功能离散协作过滤,以快速寒冷启动建议

Multi-Feature Discrete Collaborative Filtering for Fast Cold-start Recommendation

论文作者

Xu, Yang, Zhu, Lei, Cheng, Zhiyong, Li, Jingjing, Sun, Jiande

论文摘要

哈希是一种有效的技术,可以解决大规模推荐问题,因为它在计算项目上的用户偏好方面的较高计算和存储效率。但是,现有的基于哈希的建议方法仍然存在两个重要问题:1)他们的建议过程主要依赖于用户项目的交互和单个特定内容功能。当互动历史记录或内容功能不可用时(冷启动问题)时,它们的性能将严重恶化。 2)现有方法学习具有放松优化的哈希码,或采用离散坐标下降来直接求解二进制哈希码,从而导致大量量化损失或消耗相当大的计算时间。在本文中,我们提出了一种快速寒冷的推荐方法,称为多功能离散协作过滤(MFDCF),以解决这些问题。具体而言,低级别的自加权多功能融合模块旨在通过充分利用其互补性来适应二进制但内容丰富的哈希码。此外,我们开发了一种快速离散优化算法,以直接使用简单操作计算二进制哈希码。两个公共建议数据集的实验表明,MFDCF在各个方面都优于最先进的。

Hashing is an effective technique to address the large-scale recommendation problem, due to its high computation and storage efficiency on calculating the user preferences on items. However, existing hashing-based recommendation methods still suffer from two important problems: 1) Their recommendation process mainly relies on the user-item interactions and single specific content feature. When the interaction history or the content feature is unavailable (the cold-start problem), their performance will be seriously deteriorated. 2) Existing methods learn the hash codes with relaxed optimization or adopt discrete coordinate descent to directly solve binary hash codes, which results in significant quantization loss or consumes considerable computation time. In this paper, we propose a fast cold-start recommendation method, called Multi-Feature Discrete Collaborative Filtering (MFDCF), to solve these problems. Specifically, a low-rank self-weighted multi-feature fusion module is designed to adaptively project the multiple content features into binary yet informative hash codes by fully exploiting their complementarity. Additionally, we develop a fast discrete optimization algorithm to directly compute the binary hash codes with simple operations. Experiments on two public recommendation datasets demonstrate that MFDCF outperforms the state-of-the-arts on various aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源