论文标题

TECNO:具有多阶段时间卷积网络的手术阶段识别

TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks

论文作者

Czempiel, Tobias, Paschali, Magdalini, Keicher, Matthias, Simson, Walter, Feussner, Hubertus, Kim, Seong Tae, Navab, Nassir

论文摘要

自动手术期识别是一项具有挑战性且至关重要的任务,具有提高患者安全性并成为术中决策支持系统不可或缺的一部分。在本文中,我们在工作流分析中首次提出了一个多阶段的时间卷积网络(MS-TCN),该网络(MS-TCN)对手术相识别进行层次预测的细化。因果,扩张的卷积允许在模棱两可的过渡期间,即使在模棱两可的过渡期间,也可以通过平滑的预测进行大量的接受场和在线推断。我们的方法在腹腔镜胆囊切除术视频的两个数据集上进行了彻底评估,有或不使用其他手术工具信息。超过各种最先进的LSTM方法,我们验证了拟议的因果MS-TCN对手术期识别的适用性。

Automatic surgical phase recognition is a challenging and crucial task with the potential to improve patient safety and become an integral part of intra-operative decision-support systems. In this paper, we propose, for the first time in workflow analysis, a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition. Causal, dilated convolutions allow for a large receptive field and online inference with smooth predictions even during ambiguous transitions. Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information. Outperforming various state-of-the-art LSTM approaches, we verify the suitability of the proposed causal MS-TCN for surgical phase recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源