论文标题

Fadnet:差异估计的快速准确网络

FADNet: A Fast and Accurate Network for Disparity Estimation

论文作者

Wang, Qiang, Shi, Shaohuai, Zheng, Shizhen, Zhao, Kaiyong, Chu, Xiaowen

论文摘要

深度神经网络(DNN)在计算机视觉领域取得了巨大的成功。与传统手工制作的功能方法相比,DNNS在立体声匹配中获得更好的预测准确性往往可以解决差异估计问题。但是,一方面,设计的DNN需要大量的内存和计算资源来准确预测差异,尤其是对于基于3D卷积的网络,这使得在实时应用程序中很难部署。另一方面,现有的计算效率网络在大规模数据集中缺乏表达能力,因此在许多情况下它们无法进行准确的预测。为此,我们提出了一个具有三个主要特征的差异估计的高效,准确的深网,以估计估计数:1)它利用具有堆叠式块的高效2D相关层来保存快速计算; 2)它结合了残差结构,使更深的模型更易于学习; 3)它包含多尺度预测,以利用多尺度的重量调度训练技术来提高准确性。我们进行实验,以证明FADNET在两个流行数据集(场景流和Kitti 2015)中的有效性。实验结果表明,Fadnet实现了最先进的预测准确性,并且比现有的3D模型以高度的数量级速度运行。 Fadnet的代码可在https://github.com/hkbu-hpml/fadnet上找到。

Deep neural networks (DNNs) have achieved great success in the area of computer vision. The disparity estimation problem tends to be addressed by DNNs which achieve much better prediction accuracy in stereo matching than traditional hand-crafted feature based methods. On one hand, however, the designed DNNs require significant memory and computation resources to accurately predict the disparity, especially for those 3D convolution based networks, which makes it difficult for deployment in real-time applications. On the other hand, existing computation-efficient networks lack expression capability in large-scale datasets so that they cannot make an accurate prediction in many scenarios. To this end, we propose an efficient and accurate deep network for disparity estimation named FADNet with three main features: 1) It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation; 2) It combines the residual structures to make the deeper model easier to learn; 3) It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy. We conduct experiments to demonstrate the effectiveness of FADNet on two popular datasets, Scene Flow and KITTI 2015. Experimental results show that FADNet achieves state-of-the-art prediction accuracy, and runs at a significant order of magnitude faster speed than existing 3D models. The codes of FADNet are available at https://github.com/HKBU-HPML/FADNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源