论文标题
对称的8环汉密尔顿的可逆立方扰动中心
Centers of reversible cubic perturbations of the symmetric 8-loop Hamiltonian
论文作者
论文摘要
我们表明,可逆的立方系统的中心集,靠近对称的哈密顿系统$ x'= y,y'= x-x^3 $在参数空间中具有两个不可约合的组件。其中一个对应于哈密顿层,另一个对应于适当线性系统的多项式拉的系统
We show that the center set of reversible cubic systems, close to the symmetric Hamiltonian system $x'=y, y'= x-x^3$ has two irreducible components of co-dimension two in the parameter space. One of them corresponds to the Hamiltonian stratum, the other to systems which are polynomial pull back of an appropriate linear system