论文标题
远处的宏观机械和自旋系统之间的纠缠
Entanglement between Distant Macroscopic Mechanical and Spin Systems
论文作者
论文摘要
纠缠是多部分量子系统的重要特性,其特征是物体的量子状态不可分割性,而不论其空间分离如何。越来越多的宏观和不同系统之间的纠缠是量子科学的持续努力,它可以实现混合量子网络,量子增强的感应以及探测量子理论的基本限制。迄今为止,混合系统的差异和量子相关性的脆弱性阻碍了宏观混合纠缠的产生。在这里,我们首次证明了宏观机械振荡器的运动和集体原子自旋振荡器之间的纠缠状态,如爱因斯坦 - 哥索基 - 罗森 - 罗森 - 罗森 - 罗森 - 罗属差异以下的限制低于$ 0.83 \ pm pm 0.02 <1 $ $。机械振荡器是一种毫米大小的介电膜,自旋振荡器是磁场中$ 10^9 $原子的合奏。通过两个空间分离的系统传播的光由于扮演有效的负质量参考框架的作用,并在理想的情况下提供无背光的子空间,因此产生了纠缠。在实验中,量子反向被4.6 dB抑制。我们的结果铺平了超越灵敏度的标准量子限制,其实用,加速度和重力波检测以及混合量子网络中基于传送的方案的尺寸铺平了衡量运动的道路。
Entanglement is a vital property of multipartite quantum systems, characterised by the inseparability of quantum states of objects regardless of their spatial separation. Generation of entanglement between increasingly macroscopic and disparate systems is an ongoing effort in quantum science which enables hybrid quantum networks, quantum-enhanced sensing, and probing the fundamental limits of quantum theory. The disparity of hybrid systems and the vulnerability of quantum correlations have thus far hampered the generation of macroscopic hybrid entanglement. Here we demonstrate, for the first time, generation of an entangled state between the motion of a macroscopic mechanical oscillator and a collective atomic spin oscillator, as witnessed by an Einstein-Podolsky-Rosen variance below the separability limit, $0.83 \pm 0.02<1$. The mechanical oscillator is a millimeter-size dielectric membrane and the spin oscillator is an ensemble of $10^9$ atoms in a magnetic field. Light propagating through the two spatially separated systems generates entanglement due to the collective spin playing the role of an effective negative-mass reference frame and providing, under ideal circumstances, a backaction-free subspace; in the experiment, quantum backaction is suppressed by 4.6 dB. Our results pave the road towards measurement of motion beyond the standard quantum limits of sensitivity with applications in force, acceleration,and gravitational wave detection, as well as towards teleportation-based protocols in hybrid quantum networks.