论文标题

BaitWatcher:一个轻巧的Web界面,用于检测不一致的新闻头条

BaitWatcher: A lightweight web interface for the detection of incongruent news headlines

论文作者

Park, Kunwoo, Kim, Taegyun, Yoon, Seunghyun, Cha, Meeyoung, Jung, Kyomin

论文摘要

在在线共享大量信息的数字环境中,新闻头条在选择和扩散新闻文章中起着重要作用。一些新闻文章通过表现出夸张或误导性的头条来吸引观众的关注。这项研究解决了\ textit {标题不一致}问题,其中新闻标题提出的主张要么与相应文章的内容无关或相反。我们提出\ textit {BaitWatcher},这是一个轻巧的Web界面,可以指导读者在单击头条新闻之前估算新闻文章中不一致的可能性。 BaitWatcher使用了一个层次复发编码器,该编码器有效地学习了新闻标题及其相关的身体文本的复杂文本表示。为了培训该模型,我们构建了一个新闻文章的一百万个标准数据集,我们也将其发布以供更广泛的研究使用。根据焦点小组访谈的结果,我们讨论了开发可解释的AI代理以设计更好的界面来减轻在线错误信息的效果的重要性。

In digital environments where substantial amounts of information are shared online, news headlines play essential roles in the selection and diffusion of news articles. Some news articles attract audience attention by showing exaggerated or misleading headlines. This study addresses the \textit{headline incongruity} problem, in which a news headline makes claims that are either unrelated or opposite to the contents of the corresponding article. We present \textit{BaitWatcher}, which is a lightweight web interface that guides readers in estimating the likelihood of incongruence in news articles before clicking on the headlines. BaitWatcher utilizes a hierarchical recurrent encoder that efficiently learns complex textual representations of a news headline and its associated body text. For training the model, we construct a million scale dataset of news articles, which we also release for broader research use. Based on the results of a focus group interview, we discuss the importance of developing an interpretable AI agent for the design of a better interface for mitigating the effects of online misinformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源