论文标题
Schwarz引理映射满足Biharmonic方程的映射
Schwarz Lemma for mappings satisfying Biharmonic Equations
论文作者
论文摘要
在本文中,我们建立了一些schwarz类型的引理映射$φ $ g $是$ \ overline {\ mathbb {d}} $,$ f,h $在$ \ mathbb {t} $上连续函数的连续函数 圆圈。为了达到我们的目标,我们首先研究了$ T_2 $ harmonic功能的一些属性。最后,我们证明了Landau型定理。
In this paper, we establish some Schwarz type lemmas for mappings $Φ$ satisfying the inhomogeneous biharmonic Dirichlet problem $ Δ(Δ(Φ)) = g$ in $\mathbb{D}$, $Φ=f$ on $\mathbb{T}$ and $\partial_n Φ=h$ on $\mathbb{T}$, where $g$ is a continuous function on $\overline{\mathbb{D}}$, $f,h$ are continuous functions on $\mathbb{T}$, where $\mathbb{D}$ is the unit disc of the complex plane $\mathbb{C}$ and $\mathbb{T}=\partial \mathbb{D}$ is the unit circle. To reach our aim, we start by investigating some properties of $T_2$-harmonic functions. Finally, we prove a Landau-type theorem.