论文标题

特定领域知识图的属性图架构优化

Property Graph Schema Optimization for Domain-Specific Knowledge Graphs

论文作者

Lei, Chuan, Alotaibi, Rana, Quamar, Abdul, Efthymiou, Vasilis, Özcan, Fatma

论文摘要

企业通过从多个来源策划和集成其业务数据来创建特定领域的知识图。这些知识图中的数据可以使用本体学描述,该本体提供了语义抽象来根据实体和域的关系定义内容。本体学中丰富的语义关系包含了各种机会,以减少边缘遍历并因此改善图形查询性能。尽管构建可以在知识图上进行有效查询的系统付出了很多努力,但在图形设置中,对查询性能的架构优化的问题在很大程度上被忽略了。在这项工作中,我们表明图形架构设计对查询性能有重大影响,然后提出优化算法,从而利用域本体学的机会来生成有效的属性图模式。据我们所知,我们是第一个提出以本体驱动的属性图架构优化方法的方法。我们使用医疗和金融领域的两个现实世界知识图进行经验评估。结果表明,与基线方法相比,优化算法产生的模式达到了多达2个数量级的速度。

Enterprises are creating domain-specific knowledge graphs by curating and integrating their business data from multiple sources. The data in these knowledge graphs can be described using ontologies, which provide a semantic abstraction to define the content in terms of the entities and the relationships of the domain. The rich semantic relationships in an ontology contain a variety of opportunities to reduce edge traversals and consequently improve the graph query performance. Although there has been a lot of effort to build systems that enable efficient querying over knowledge graphs, the problem of schema optimization for query performance has been largely ignored in the graph setting. In this work, we show that graph schema design has significant impact on query performance, and then propose optimization algorithms that exploit the opportunities from the domain ontology to generate efficient property graph schemas. To the best of our knowledge, we are the first to present an ontology-driven approach for property graph schema optimization. We conduct empirical evaluations with two real-world knowledge graphs from medical and financial domains. The results show that the schemas produced by the optimization algorithms achieve up to 2 orders of magnitude speed-up compared to the baseline approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源