论文标题
通过高度非结构化的数据预测计划外的再入院
Predicting Unplanned Readmissions with Highly Unstructured Data
论文作者
论文摘要
深度学习技术已成功地用于预测医疗中心患者的计划外再入院。这些模型的培训数据通常基于历史病历,其中包含大量的录取报告,推荐,考试笔记等中的自由文本。到目前为止,提出的大多数模型都是针对英语文本数据量身定制的,并假设电子病历遵循发达国家常见的标准。这两个特征使它们难以在发展中国家使用,这些发展中国家不一定遵循国际标准以注册患者信息,或以英语以外的其他语言存储文本信息。 在本文中,我们提出了一种深度学习体系结构,用于预测计划外的重新入学率,该数据消耗的数据与文献中的先前模型相比,该数据的结构要小得多。我们使用它在主要包含西班牙文本数据的大型临床数据集中介绍此任务的第一个结果。该数据集由智利医疗中心的近10年记录组成。在此数据集上,我们的模型获得了与美国医疗中心在同一任务中获得的一些最新结果相当的结果(0.76 AUROC)。
Deep learning techniques have been successfully applied to predict unplanned readmissions of patients in medical centers. The training data for these models is usually based on historical medical records that contain a significant amount of free-text from admission reports, referrals, exam notes, etc. Most of the models proposed so far are tailored to English text data and assume that electronic medical records follow standards common in developed countries. These two characteristics make them difficult to apply in developing countries that do not necessarily follow international standards for registering patient information, or that store text information in languages other than English. In this paper we propose a deep learning architecture for predicting unplanned readmissions that consumes data that is significantly less structured compared with previous models in the literature. We use it to present the first results for this task in a large clinical dataset that mainly contains Spanish text data. The dataset is composed of almost 10 years of records in a Chilean medical center. On this dataset, our model achieves results that are comparable to some of the most recent results obtained in US medical centers for the same task (0.76 AUROC).